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INTRODUCTION

® W and Z bosons are produced at

an extremely high rate at both the
Tevatron and the LHC.

® Such events contain additional
radiation, mostly soft.

® Hard radiation is not that
expensive; naive estimate of
suppression by as(mw) about right.
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B Plenty of events compared to top
and Higgs/NP processes.
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MOTIVATION

B Tag W/Z decay— final state: lepton(s)+(missing energy)+jets;
background to many search channels at the Tevatron and LHC.

b ! b t-channel single top —
B top processes H’LL< ’ W+ at least 1 jet (b-tag)

W+2 or more jets tor tt

background
® Higes production for WBE

=77

B supersymmetry and other models for new physics provide
plenty of sources of missing energy and jets.

® Validation of theoretical tools with plenty of data.

® Benchmark for next round of backgrounds, e.g. top + jets, and
hopetully for signals at the LHC too!



THEORY APPROACHES

® Theoretical predictions are mostly based on two approaches.

B Fixed order QCD perturbation theory.
B casy at LO but limited at NLO, almost no-go at NNLO;

B one parton per jet at LO, possibly two at NLO, ... ;

® small number of particles in total.

B Parton shower, e.g. Pythia or HERWIG.

B start with a hard process, additional radiation produced
stochastically;

B any number of patrticles in total/per jet;

B cffects of soft and collinear particles well-modelled
(resummed) but large angle/hard radiation poorly described.



PRECISION VS. JETS

PRECISION

® To describe W+jets data,

we need to work in both B
directions.
NLO
B Progress on multiple
fronts: primarily more =
. PARTON
NLO and techniques for s

improving parton showers.

MULTIJETS
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B Matching: use PS shower where it works and LO
matrix elements where approximations break down.
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NLO PS: shower uses NLO ME:s, including one real emission,

‘ ‘ S.Frixione, B.Webber,
e.g. MC@NLO. Must avoid double counting. e



TECHNICAL CUT

8 SHERPA implements the CKKW prescription for matching,
with a jet resolution cut Qcur determining the use ot ME or PS.

B [n principle, algorithm independent of choice (at this order),

but in practise should be guided by common sense/data.
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® Clearly, choosing the cut too hard exposes the inadequacy of
the PS that we were trying to avoid. Similar for other methods.



MATCHING COMPARISON

® Much work has been done to compare different parton
shower matching procedures for W+jet predictions.

® Differences in rates and distributions, but ...
B variations can be accounted for by usual change of scales

® could tune to Tevatron data and extrapolate to LHC
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HIGHER ORDERS

° ; C. Anastasiou et al.
® Inclusive production of W and Z known to NNLO. hep-ph/0312266

® accuracy of a few percent on total rate and distributions.

® X/ Z+1 jet known at NLO for a long time, W. Giele, N. Glover,

D. Kosower,
where “jet’ means a massless quark or gluon hep-ph /9302905

B related process ete” — 3 jets now known at NNLO

q q

A. Gehrmann- non-trivial work

EeRRSdder et al, A ' A

to do crossing to
arXiv:0711.4711 ! hadron collider

q
q

2 jets known at NLO for some time
JC, K. Ellis, hep-ph /0202176

® barring immense breakthrough, NNLO very unlikely

® The NLO parton shower MC@NLO matches to inclusive
W /Z processes. One extra jet not infeasible, but for now
must choose either higher orders or parton shower.



CDF COMPARISON

NLO (NO HADR’N OR UE)

%15 | 2 CDF Il / MCFM Scale uncertainty PDF uncertainty
L T -
DS e 7 3t 3 o P < St 1
__é_ PaZaafEras e e B
.F_,rgﬂ.ﬁ — |—%
[ . . . . |
C k. ey ALPGEN+HERWIG(MLM)
19 -_!%I-I-J'I-_-I_I_' L *—i
1 L l-i—|_-_t l

0.5 * COF Il /MLM
L Scale uncertainty

150 o
Padgars f 1

05F = CDFIl/SMPR
- Scale uncertainty

e

MADGRAPH+PYTHIA(CKKW)

-

50 100

150

300

® Open questions:

550

300 350
First Jet E_ (GeV)

o UDatanTheury
tn AR th = M

=k

"
o — tn b
T

T. Adltonen et al. (CDF), arXiv:0711.4044

— 2 CDF Il /f MCFM Scale uncertainty --- PDF uncenainfy

1 t : $
[

T = CDF Il / SMPR

Scale uncertainty

B0 _ 180
et E_(GeV)

80 100 120 1&% i
Second

® NLO description excels, but agreement  too good™ .

B can we extend NLO to higher multiplicities?

® if not, how do we best estimate rates?

® how do the approaches fare for distributions?



ErC. PROSPECTS

B At the Tevatron, rate for
vector boson pairs is just 0’

. T
events/see for =1 ¢m s

enough to be observable. £ fwezsers v 2 o
S 10 o (E.*> 100 GeV) % 10
B At the LHC there will be o ww, A 10
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plenty of WW+ jets.

® Need similar studies there, e.g. for probing Higes sector.
B. Mellado, W. Quayle, S. L. Wu, arXiv:0708.2507

oluon fusion — WBF — two systematic study
0 jets (veto); forward jets, " i of WW+jet

rad1at10n — 1| % one of which 77 backgrounds a
or mote jets may be lost ” priotity

B ME-+DPS: extra W means harder to crunch, but much the same.

B Fixed order: WW known at NLO for a long time, WW+jet
recently CCIlCU.lCltGd. S. Dittmaier, .1 Kallweit, P. Uwer; arXiv: 07 1 @SS

JC, K. Ellis, G. Zanderighi, arXiv:0710.1832
T. Binoth et al., arXiv:0803.0494



HEAVY FLAVORS

® Heavy quarks are different: the mass regulates the collinear
pole in the matrix elements so that e.g. pr(Q)—0 limit is safe.

e massless quark
(6666 e predictions diverge as p1(Q)—0
q : e must impose min. pt and jet separation
» massive quark
{6666 » divergence regulated, behaves as log(m?)
Q = » no cuts necessary, can calculate inclusively

B Sometimes we are not interested in the low pt behaviour and
want to treat the heavy quark as just another ordinary jet.

100 EI | I ! I !

f—
n

wemm ' _ 7] ® The effect of the mass
j is O(m2/Q?) but large

Mr:uf:Mw+2mb :

Inclusive case

g
3 :
g 10p 3% around threshold.
=) 0 =z cuts: p > 15 GeV
1= | —
L —
EEE i .%0-5 In| <2 :
R 5, | & c-0; 1 @ Neglect — easier
151 --- NLO massless O, =345pb = ¥ ’
1| — NLO massive o_ =320pb § © (- — theory.
TI | ] | | I | | | | 1 | I_ | | | I | | | I | | ] I |
30 60 9 120 150 180 30 60 90 120 150 180

my; (GeV) m,; (GeV) F. Febres Cordero et al., hep-ph/0606102



HQ APPROACHES

B For very high c.o.m. energies we are sensitive to the heavy
quark content of the proton sea

® We are used to this description already for charm, but not as
tfamiliar with the bottom quark - more important at LHC.

dibeut: 5°/0 of y no hea uark
the inclusive W - variale}le flavor -+ PIDEISS ﬁ‘;}éél flavor
Cross section at scheme™ (VES) ) scheme” (FFS)
T E

® The PDF represents the production of a heavy quark from a
oluon splitting, together with an (unobserved) antiquark.

® could have included splitting explicitly and integrated out.

® The two approaches are of course exactly equivalent in the
full theory; at a given order of PT, it might not be the case.

B [mportant to understand what differences exist and if /when
one approach is superior. Parton shower typically uses FES.



PROS AND CONS

M. Mangano, LBNL workshop, March 2008

Features: Massless PDF approach  Massive ME approach

Exact massive kinematics
and phase-space onset
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PROTOTYPE PROCESS

B W+tc: simplest possible case. Analyzed by Berger et al. (1989).

® NLO predictions known in both schemes.
W. Giele, S. Kellet, E. Laenen, hep-ph/9511449
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mion, B0 ] large difference at
I B e i [.O reduced at NLLO
2 [ I - ) agreement at 20% level
i S, I for small scale choice,
_m_ o L T which is well-motivated
' theoretically
ol el - T
oz o3 os o7 io oood stability wrt scale
JC, F. Maltoni, M. Mangano, F. Tramontano variation ftor 2=

® Real phenomenology: differences of this size bring into
question claims of few % accuracy in inclusive W cross-section.



DISTRIBUTIONS

More important: how do distributions compare with parton

shower approaches used in many analyses?
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B more use of PS/ME merging.



COMPARISON WITH DATA

8 CDF result (non-inclusive): pt(c) > 20 GeV, |n(c)|<1.5.

OxBR(W—evV) [pb]

CDF 9.8 + 3.2
T. Aaltonen et al., arXiv:0711.2901
LO - Q2=mw2+pT2 6.8
LO - Q2=PT2 8.8

NLO - Q%=(40 GeV)?

11.0 (+1.4,-3.0)
/

/

variation over wide scale range and multiple Good
PDF sets — large residual uncertainty agreement




W+BOTTOM

B No direct analogue with W+charm (CKM). Requitre hard b.

® Two mechanisms for producing W+b+(another unseen jet):
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e no b in initial state e use bottom PDF
e inclusive of second b e inclusive of light quark
— need massive ME (protected by W mass)

® Goal: combine both calculations at NLO for best prediction.
Cannot do all in FFS since Wbbj not known at NLO.

F. Febtres Cordero et al. + F. Maltoni et al. (ongoing)

® The calculations have some overlap at NLO, so some care
must be taken not to double count.



Rates for W+b+X [pb]

Tevatron

i 15 GeV
|n| <2

HHI®
2> GeV

PRELIMINARY RESULTS
T - SUM
LO 10.22 1.81 1 2 .68
NLO 15.94 2.78 18.72
relative importance of the K-factor =~ 1.5
two processes reversed at both
LO 97.9 IS74CINO, 270.9
NLO 136.8 283.8 420.6

|7]|<2.5

B Preliminary results from CDF (pt>20 GeV,|n|<2) indicate
data is above LLO theory by factor of 3-4, but distns are OK.

® NLO result might help somewhat but still a puzzle.




Z+HEAVY QUARK

B Similar to W+Db, except that there is also a gg O(as?) process.
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Large discrepancy, but less for smaller scales. Rigorous study
c) necessary for real understanding.



DISCREPANCY

The discrepancy is in marked
contrast to photon+b process.

Here photon pr naturally sets

the scale.

Works well already at LO; how

about NLO? Partly known.
EEtioct L Gordon  hep-ph /I512545

Also, discrepancy is masked by the large qq contribution
(>= go) when comparing with data on the integrated rate.
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How do we
interpret this
apparent
agreement?

Compatrison of pr distribution below ~40 GeV essential to
understanding theory and learning lessons for LHC.



STATE OF PLAY

® Active field in preparation for upcoming tests at the LHC.

1 C-TAG 1 B-TAG 2 C-TAG | 2 B-TAG
W+ 1 JET (GKLFng,l\ch:_IE:)T 05) (F;ngSMu_gs) N/A N/A
W+2 JETS LO ONLY NS FF NLO (FRW 07)
241 JET | SENSummmos
Z+2 JETS (glf:/ﬁv%?s) FF NLO (FRW 08)

GKL = Giele, Keller, Laenen

CET = JC, Ellis, Tramontano

FRW = Febres Cordero, Reina, Wackeroth
CEMW = JC, Ellis, Maltoni, Willenbrock

B 2 jets with one tag — HVQ only
® Beyond 2 jets uncalculated at NLO.




SUMMARY

® |n absence of heavy quarks, situation is quite encouraging.
B oood agreement between data and theory;
B PS/ME matching mature, just need more to tune with;

B NLO works well (up to 2 jets), new automated multi-leg
approaches may get us further in the near future.

® For heavy quarks, picture is not so cleat.
B in some cases, no agreement at all - elsewhere, only patchy;

® latest Tevatron data is confronting the two theoretical
approaches — real chance to understand tools;

B systematic evaluation of theory underway.



